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Abstract

Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport
simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small
steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells
according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing
the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate
solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-dif-
fusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend
previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear,
time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to
the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is
discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally
discretized DDMC techniques, but it also has the benefit that a particle’s time is always known. Thus, there is no ambiguity
regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transport-
ing by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically
thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accu-
rate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for
estimating radiation momentum deposition during the DDMC simulation, a quantity that is required to calculate correct
fluid motion in coupled radiation-hydrodynamics problems. With a set of numerical examples, we demonstrate that our
improved DDMC method is accurate and can provide efficiency gains of several orders of magnitude over standard Monte
Carlo.
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1. Introduction

The Implicit Monte Carlo (IMC) method [1] has been shown to be an effective technique for solving non-
linear, time-dependent, radiative-transfer problems via Monte Carlo simulation. In IMC, the absorption and
emission of radiation by the material within a time step is approximated semi-implicitly by an effective scatter
process. This effective scattering helps stabilize the calculation, allowing larger time steps than in a purely
explicit method [2–4] (where radiation absorbed in a given time step cannot be re-emitted until the following
time step). However, in optically thick regions, the mean-free path is small, and collisions are dominated by
effective scatters. Thus, the transport process can be characterized as diffusive, and particles will suffer many
collision during their lifetimes. These particle histories have an excessive number of steps and are expensive to
process, a situation that results in a computationally inefficient Monte Carlo simulation.

Because of the diffusive nature of optically thick regions in IMC calculations, one would like to employ a
hybrid method that uses standard Monte Carlo in optically thin regions of the problem and uses the diffusion
approximation in optically thick regions. Ideally, this hybrid technique would produce accurate solutions
while being more efficient than a pure Monte Carlo calculation. One such hybrid transport-diffusion method
is based on the Random Walk (RW) technique [5,6]. In RW, several Monte Carlo steps are replaced by a mac-
rostep over a spherical subregion of the cell centered about the particle’s current position, thus increasing the
efficiency of the simulation. Each RW step is governed by an analytic diffusion solution within the sphere, and
the minimum allowable sphere radius (as measured in mean-free paths) is limited to ensure the accuracy of the
diffusion solution. As a particle nears a cell boundary the radius of the sphere is reduced, RW is disabled, and
the particle transports by standard Monte Carlo. When a spatial region is optically thin the radius of the
sphere may never be sufficiently large enough to invoke RW, and particles will transport according to standard
Monte Carlo only.

Discrete Diffusion Monte Carlo (DDMC) is another technique for increasing the efficiency of Monte Carlo
simulations in diffusive media [7–10]. In DDMC, particles take discrete steps between spatial cells according to
a discretized diffusion equation, with each discrete step replacing many small Monte Carlo steps. In practice,
DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accu-
rately simulate problems with both diffusive regions (where DDMC is used) and non-diffusive regions (where
standard Monte Carlo is employed). Since a particle can travel to a new cell with each DDMC step (whereas
RW is limited to a spatial subdomain within a cell), DDMC should be more efficient than RW.

Urbatsch et al. have developed a DDMC method for steady-state neutron transport problems [7], while the
DDMC scheme of Evans, Urbatsch and Lichtenstein is designed to work with the equilibrium diffusion equa-
tion [8,11]. Gentile has successfully applied a method similar to DDMC (which he refers to as Implicit Monte
Carlo Diffusion) to radiative-transfer calculations [9]. In this paper, we extend these previously developed
DDMC techniques in three ways that improve the accuracy and utility of DDMC for planar-geometry, grey
(i.e., frequency-independent) radiative-transfer simulations [10].

First, we employ a diffusion equation that is discretized in space but is continuous in time. In addition to
being theoretically more accurate than temporally discretized DDMC implementations that use backward-
Euler differencing [8,9], our methodology always retains the time of particle. Thus, there is no ambiguity
regarding what time to assign a ‘‘DDMC particle’’ (i.e., a particle transporting in an optically thick region
according to DDMC) that leaves an optically thick region and is converted into a ‘‘Monte Carlo particle’’
(i.e., a particle transporting in an optically thin region according to standard Monte Carlo). In contrast, other
DDMC methods sample a time uniformly within the time step [9], and a particle may leave an optically thick
region before it originally entered it, violating causality. This non-physical situation is avoided in our DDMC
technique.

Second, we use an improved interface method for converting Monte Carlo particles incident on an optically
thick region into DDMC particles [12,13]. This interface technique, which is based on the asymptotic diffu-
sion-limit boundary condition [14], produces accurate solutions in the interior of optically thick regions
regardless of the angular distribution of the incident radiation. Previous interface treatments that employ
the Marshak boundary condition [7,8,15] can behave poorly if the incoming Monte Carlo particles are
strongly anisotropic [12,13]. Also, Gentile uses an interface method that allows Monte Carlo particles to
undergo several collisions in an optically thick region before converting these particles into DDMC particles
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[9]. In addition to being inefficient because it uses Monte Carlo simulation in diffusive media, Gentile’s tech-
nique can also produce erroneous results, especially if spatial cells are optically large [13].

Finally, we develop a scheme for determining radiation momentum deposition during the DDMC simula-
tion. In coupled radiation-hydrodynamics problems, the correct calculation of fluid motion requires estimates
of both the energy and momentum deposited in the material by the radiation [16,17]. The estimation of energy
deposition is straightforward in both Monte Carlo and DDMC; when a particle is absorbed, its energy is allo-
cated to the material. However, the calculation of momentum deposition in DDMC is difficult, since momen-
tum is a direction-dependent quantity. DDMC is based on the diffusion approximation, therefore, DDMC
particles have no angular information. To avoid this difficulty, we employ a momentum-deposition estimator
that is based on the rate at which DDMC particles cross cell surfaces. Thus, angular information is extracted
from the direction a particle travels to a new cell.

In the remainder of this paper we briefly overview the analytic equations governing planar-geometry, grey
radiative transfer, the corresponding IMC method, and difficulties with IMC in optically thick regions. We
then develop our improved DDMC technique and show how it can be combined with standard Monte Carlo
in a hybrid transport-diffusion IMC simulation. Next, we use a set of numerical examples to demonstrate both
the accuracy and improved efficiency, with respect to standard Monte Carlo and RW, of our new DDMC
method. We conclude with a brief discussion.

2. Background

In the absence of internal sources and scattering, the planar-geometry, grey, radiative-transfer equations
are [16–18]
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Here, 0 < x < X is the spatial variable, �1 6 l 6 1 is the angular variable, t > 0 is the temporal variable,
I(x,l, t) is the radiation intensity, T(x, t) is the material temperature, r(x,T) is the opacity, Cv(x,T) is the heat
capacity, a is the radiation constant, and c is the speed of light. To complete the problem description, appro-
priate initial conditions apply to I and T at t = 0 and to I for incoming directions at the left (x = 0) and right
(x = X) boundaries.

In order to solve Eqs. (1) and (2) using IMC, we first prescribe a temporal grid 0 = t0 < t1 < t2 < � � � Then,
within each time step tn < t < tn+1, the emission source on the right side of Eq. (1) is approximated semi-implic-
itly using Eq. (2). The resulting equations governing the IMC method are [1]
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where the subscript n refers to material properties evaluated at the beginning-of-time-step value of the temper-
ature. In addition, the Fleck factor fn is given by
fn ¼
1

1þ bncrnDtn
; ð5Þ
where
bn ¼
4aT 3

n

Cv;n
; ð6Þ
and Dtn = tn+1 � tn is the size of the time step.
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For each time step, Eq. (3) can be solved for I using standard Monte Carlo simulation. The initial condi-
tions are given by the prescribed initial radiation intensity and material temperature for the first time step, or
by the results of the previous time step for subsequent time steps. Note that we have divided the explicitly eval-
uated physical opacity rn into an isotropic effective-scattering opacity (1 � fn)rn and a corresponding effective-
absorption opacity fnrn. Thus, the IMC method approximates the absorption and emission of radiation within
a time step by isotropic scattering. Accordingly, the emission source has been reduced by a factor of fn. After I

has been determined, the material temperature is updated using the radiation energy absorbed and emitted
over the time step to evaluate Eq. (4).

In addition to the net radiation energy deposited in the material, coupled radiation-hydrodynamics calcu-
lations also require an estimate of the radiation momentum deposited in the material. The momentum depo-
sition (i.e., the rate at which radiation momentum is deposited in the material per unit volume) corresponding
to Eq. (1) is given in Refs. [16,17] by the equation
pðx; tÞ ¼ r
c

Z 1

�1

lIðx; l; tÞdl: ð7Þ
Integrals of this form can be estimated by Monte Carlo simulation in a straightforward manner. In this paper,
we employ a track-length estimator [19] and approximate the opacity by its explicit value rn.

Eqs. (3) and (4) provide a systematic way of solving Eqs. (1) and (2) via Monte Carlo. However, in mate-
rials in which the opacity is large, the Monte Carlo simulation can become inefficient. Not only is the mean-
free path between collisions small, but also, as we see from Eq. (5), the Fleck factor is small, and collisions are
primarily effective-scattering events. Thus, the problem is highly diffusive, and Monte Carlo histories are extre-
mely long. In the next section, we present a hybrid transport-diffusion technique for solving Eq. (3). In diffu-
sive conditions, this hybrid method is much more efficient than standard Monte Carlo when the opacity is
large but still yields accurate results.
3. Discrete diffusion Monte Carlo

We now develop the equations governing our improved DDMC method. This technique is based on the
diffusion approximation to Eq. (3), so it should yield accurate solutions when used in appropriate regions
(i.e., when rn is large and fn is small). In addition, we will show that the DDMC transport process consists
of discrete steps between spatial cells. Thus, DDMC should be more computationally efficient than a standard
Monte Carlo simulation of Eq. (3).

We begin by considering a subregion XL < x < XR of the problem domain that has been designated for sim-
ulation by DDMC. In this region, we develop a cell-centered discretization of the diffusion approximation cor-
responding to Eq. (3). This derivation is similar to the work of Szilard and Pomraning [20], except that we only
discretize the spatial variable and treat time continuously. Integrating Eq. (3) over all directions yields
1

c
o/
ot
þ oF

ox
þ fnrn/ ¼ fnrnacT 4

n; ð8Þ
where the scalar intensity is
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and the radiative flux is given by
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Next, we divide the DDMC region into a spatial grid XL = x1/2 < x3/2 < � � � < xJ+1/2 = XR consisting of J

cells. If we integrate Eq. (8) over spatial cell j, we have
1
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In Eq. (11), the cell-averaged scalar intensity is given by
/jðtÞ ¼
1

Dxj
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/ðx; tÞdx; ð12Þ
the cell-edge flux is
F jþ1=2ðtÞ ¼ F ðxjþ1=2; tÞ; ð13Þ
Dxj = xj+1/2 � xj�1/2 is the cell width, and we have used appropriate cell-averaged quantities for the material
properties.

3.1. Interior cells

We continue our derivation of a cell-centered discretized diffusion equation for cells 2 6 j 6 J � 1 in the
interior of the DDMC region. We first evaluate the cell-edge fluxes using Fick’s law [15,20]:
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By employing a finite-difference approximation for Eq. (14), we can express Fj+1/2 in cell j as
F jþ1=2 ¼ �
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or in cell j + 1 as
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In Eqs. (15) and (16), /j+1/2 is an appropriately defined cell-edge scalar intensity. In addition, we have used a
face-averaged value for the opacity in each cell. We will discuss the evaluation of these opacities later in this
paper.

Next, equating Eqs. (15) and (16) and solving for the cell-edge scalar intensity yields
/jþ1=2 ¼
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Then, if we use Eq. (17) to evaluate either Eq. (15) or (16), we find that an approximate expression for the cell-
edge flux is
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Substituting Eq. (18) and a similar expression for Fj�1/2 into Eq. (11) gives the DDMC equation for cells
2 6 j 6 J � 1:
1
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In Eq. (19), we have defined the left-leakage opacity as
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and the right-leakage opacity as
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We now give Eq. (19) a Monte Carlo interpretation. This equation can be viewed as a time-dependent infi-
nite-medium transport problem for each cell. Thus, DDMC particles have no position or angular information,
but always know their current cell and time. DDMC particles stream in time (but not in space) at the speed of
light until experiencing a collision. To sample the time to collision s, we first note that the time between col-
lisions (as measured in mean-free times) is distributed exponentially, just as the distance between collisions (as
measured in mean-free paths) in spatially dependent simulations. Thus, s can be sampled in a way similar to
the usual method of sampling distance to collision [19],
s ¼ � 1

c
1

rL;j þ rR;j þ fn;jrn;j
ln n: ð22Þ
Here, n is a random number uniformly distributed between 0 and 1, and the total opacity is given by the sec-
ond term on the left side of Eq. (19) as rL,j + rR,j + fn,jrn,j.

If the time to collision is less than the time remaining in the time step, the DDMC particle undergoes a
collision, and the time to collision is decremented from the time remaining in the time step. Again, as we
see from the second term on the left side of Eq. (19), a collision can be an absorption reaction, a left-leakage
reaction, or a right-leakage reaction. The collision type is sampled from a histogram constructed from the rel-
ative magnitudes of the different opacities. If the collision is an absorption, the particle history is terminated,
as in standard Monte Carlo. If the DDMC particle undergoes a leakage reaction, it is transferred to the appro-
priate neighboring cell, and the simulation continues.

If the time to collision is greater than the time remaining in the time step, the DDMC particle reaches the
end of the time step and is stored for simulation in the next time step. Since, in the next time step, DDMC
might not be used in the particle’s cell, the DDMC particle is placed isotropically and spatially uniformly
within the cell.

The right side of Eq. (19) contains the usual emission source term and source terms corresponding to
DDMC particles experiencing leakage reactions in neighboring cells and being transferred to the current cell.
These leakage source terms can be interpreted as the total rate at which radiation energy undergoes leakage
reactions in adjacent cells (i.e., the leakage opacity multiplied by the cell-averaged scalar intensity multiplied
by the cell volume) divided by the volume of the current cell such that the leaked radiation is distributed evenly
over the cell.

It is interesting to note that as the opacity increases, not only do the leakage opacities decrease [from Eqs.
(20) and (21)], but also, the absorption opacity fn,jrn,j is O(1) [from Eq. (5)]. Thus, from Eq. (22), the time
between collisions is not excessively small, the collisions are primarily absorptions, and DDMC particle his-
tories are relatively short. This situation is exactly the opposite effect that a large opacity has on a standard
Monte Carlo simulation of Eq. (3).

We now discuss the evaluation of the face-averaged opacities in Eqs. (20) and (21). According to Szilard
and Pomraning, if one of these opacities is very large, then the entire expression can be small, and radiation
will not propagate [20]. This lack of propagation is commonly seen when the opacity is strongly temperature-
dependent, and the material is cold. To prevent this non-physical behavior, Szilard and Pomraning suggest
evaluating the opacities at a common cell-edge temperature. For example, in Eq. (21), we calculate r�n;jþ1=2

using the material properties in cell j and rþn;jþ1=2 using the material properties in cell j + 1. However, from
Ref. [20], the temperature used to evaluate both opacities is
T n;jþ1=2 ¼
T 4

n;j þ T 4
n;jþ1

2

 !1=4

: ð23Þ
A similar technique can be used to calculate Eq. (20).

3.2. Interface cells

Next, we develop a method for interfacing DDMC with standard Monte Carlo by deriving a cell-centered
equation for cell j = 1 on the left boundary of the DDMC region. A similar analysis can be performed for cell
j = J. Writing Eq. (11) for j = 1 and using Eq. (18) for F3/2 yields
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Here, we have made use of Eqs. (20) and (21). To complete this derivation, we must find an approximate
expression for the flux at the boundary of the DDMC region.

Instead of using the usual Marshak boundary condition [15,20], we consider the asymptotic diffusion-limit
boundary condition [14]:
2

Z 1
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W ðlÞIbðl; tÞdl ¼ /ðX L; tÞ �
k
rn

o/
ox

����
x¼X L

: ð25Þ
In Eq. (25), Ib(l, t) is the radiation intensity due to Monte Carlo particles incident on the DDMC region, while
k � 0.7104 is the extrapolation distance. In addition, W(l) is a transcendental function well approximated by1
W ðlÞ � lþ 3

2
l2: ð26Þ
Eq. (25) can be derived in an asymptotic analysis of Eq. (3) as rn becomes large and fn becomes small. This is
exactly the situation in which DDMC is employed. Also, the incident intensity is weighted by W(l), a function
that takes into account the angular distribution of the incoming Monte Carlo particles. An interface method
based on Eq. (25) will be able to produce accurate results in the interior of the DDMC region even if the inci-
dent radiation is anisotropic [12,13]. In contrast, the Marshak boundary condition treats all angular distribu-
tions identically and can produce inaccurate solutions for strongly anisotropic Monte Carlo particles [12,13].

To express F1/2 using Eq. (25), we approximate the derivative on the right side with a finite difference. We
then have
2
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W ðlÞIbðl; tÞdl ¼ /1=2 �
2k

rn;1Dx1

ð/1 � /1=2Þ; ð27Þ
where rn,1 is the explicitly evaluated cell-averaged opacity in cell j = 1, and /1/2 is an appropriately defined
cell-edge scalar intensity. Solving Eq. (27) for /1/2 yields
/1=2 ¼
2k
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rn;1Dx1 þ 2k
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Next, we use Eq. (16) to represent F1/2,
F 1=2 ¼ �
2
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ð/1 � /1=2Þ; ð29Þ
where we have evaluated the face-averaged opacity with the cell-averaged value, i.e.,
rþn;1=2 ¼ rn;1: ð30Þ
When we substitute Eq. (28) into Eq. (29), we find that an expression for the flux at the boundary of the
DDMC region is
F 1=2 ¼ �
2
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/1 � 2
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: ð31Þ
Using Eq. (31) in Eq. (24) yields the DDMC equation for cell j = 1:
1
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Here, the left-leakage opacity is given by
e reviewer pointed out that another approximation, which may be more accurate in some applications and could easily be
ented into our existing methodology, is W(l) = 0.91l + 1.635l2.



492 J.D. Densmore et al. / Journal of Computational Physics 222 (2007) 485–503
rL;1 ¼
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Dx1

2
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instead of Eq. (20), and P(l) is defined as
P ðlÞ ¼ 4

3rn;1Dx1 þ 6k
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2
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Eq. (32) has a Monte Carlo interpretation similar to that of Eq. (19). The only difference on the left side is
the expression for the left-leakage opacity. On the right side, there is now a source due to Monte Carlo
particles incident on the boundary of the DDMC region. We note that the rate at which radiation energy
is incident on the DDMC region boundary for a given direction l is lIb. Then, P(l) has the interpretation
of being the probability that an incoming Monte Carlo particle with direction l is converted into a DDMC
particle. This interface methodology is similar to the treatment developed by Brockway for combining
Monte Carlo and deterministic diffusion calculations [21]. However, our technique has a direction-depen-
dent conversion probability and is based on the asymptotic diffusion-limit boundary condition, whereas
Brockway’s employs an angularly independent conversion probability and is developed from the Marshak
boundary condition.

We implement the conversion of Monte Carlo particles into DDMC particles in two separate ways. First, if
the DDMC region is away from the problem boundary (for example, XL 6¼ 0), we sample based on Eq. (34) to
determine if the incident Monte Carlo particle is converted. If the particle is converted, it begins transporting
via DDMC in cell j = 1. Otherwise, the particle is returned isotropically to the optically thin region. DDMC
particles that undergo left-leakage reactions in cell j = 1 are also placed isotropically on the boundary of the
DDMC region. This angular distribution is only correct when the incident intensity is isotropic and may be
very inaccurate for small exiting angles (i.e., when the cosine between the particle direction and surface normal
is small). However, particles with these small angles have the least impact on the solution, and in general, this
isotropic angular distribution can be shown to be a good approximation [22]. We are currently investigating
the use of more accurate angular distributions [23].

Second, if the DDMC region is on the boundary of the system (for example, XL = 0), then the incoming
Monte Carlo particles are actually source particles due to a prescribed incident intensity. In this case, we split
the particles according to Eq. (34). That is, a fraction P(l) of the particle is converted into a DDMC particle
and begins transporting via DDMC in cell j = 1, while the remaining fraction 1 � P(l) is tallied as escaping
energy. DDMC particles that experience left-leakage reactions in cell j = 1 are also counted as escaping
energy.

There are two difficulties when evaluating the conversion probability, Eq. (34). First, the conversion prob-
ability, along with the left-leakage opacity given by Eq. (33), vanishes when the opacity becomes large. Thus,
no radiation can pass through the DDMC region boundary if the first cell is too optically thick. We correct
this situation by adjusting the conversion probability and leakage opacity to ensure that an accurate flux is
preserved at the boundary. For brevity we do not repeat this analysis here; a full description is given in
Ref. [24]. In addition, Eq. (34) must have a valid probabilistic interpretation, i.e.,
0 6 P ðlÞ 6 1; 0 < l 6 1: ð35Þ

In our DDMC implementation, we require that spatial cells are large enough such that Eq. (35) is always
satisfied.

3.3. Estimation of momentum deposition

Coupled radiation-hydrodynamics calculations require estimates of the radiation energy and the radiation
momentum deposited in the material. The estimation of energy deposition in DDMC is the same as in stan-
dard Monte Carlo; when a particle is absorbed, its energy is allocated to the material. The momentum depo-
sition is given by Eq. (7),
pðx; tÞ ¼ r
c

Z 1

�1

lIðx; l; tÞdl; ð36Þ
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and is straightforward to estimate in a standard Monte Carlo simulation. However, the estimation of momen-
tum deposition in DDMC is difficult since there is no angular information to evaluate Eq. (36).

Instead, we use Eq. (10) to write Eq. (36) as a function of the radiative flux at a surface. For example, at
x = xj+1/2, we can express the momentum deposition as
pjþ1=2 ¼
rn;jþ1=2

c
F jþ1=2; ð37Þ
where we have employed a time-explicit, face-averaged value for the opacity. Then, for each cell, we average
the two cell-edge values of the momentum deposition in order to estimate the cell-averaged value,
pj ¼
1

2c
ðrþn;j�1=2F j�1=2 þ r�n;jþ1=2F jþ1=2Þ: ð38Þ
Note that we have evaluated Eq. (37) using the same face-averaged opacities used to calculate the leakage
opacities [Eqs. (20), (21), and (33)].

The radiative flux in Eq. (38) can easily be calculated during a DDMC simulation. For cells interior to the
DDMC region, we can express Eq. (18) using Eqs. (20) and (21) as
F jþ1=2 ¼ rR;j/jDxj � rL;jþ1/jþ1Dxjþ1: ð39Þ
Eq. (39) is the rate at which radiation energy undergoes right-leakage reactions in cell j, minus the rate at
which radiation energy experiences left-leakage reaction in cell j + 1. Similarly, we can write Eq. (31) using
Eqs. (33) and (34) as
F 1=2 ¼
Z 1

0

P ðlÞlIbðl; tÞdl� rL;1/1Dx1: ð40Þ
We view Eq. (40) as the rate that incident radiation energy enters the DDMC region, minus the rate that radi-
ation energy undergoes left-leakage reactions in cell j = 1. Contributions to the time-step averages of Eqs. (39)
and (40) are tallied each time a DDMC particle moves to a new cell. Then, at the end of the time step, these
estimates of the cell-edge fluxes can be used to evaluate Eq. (38) and calculate the momentum deposition for
each DDMC spatial cell.

4. Numerical results

We now demonstrate the accuracy and improved efficiency, with respect to standard Monte Carlo and RW,
of our new DDMC method using a series of IMC simulations. In these problems, we measure energy in giga-
joules (gJ), time in nanoseconds (ns), and temperature in kiloelectron-volts (keV). In addition, the material has
a temperature-independent heat capacity of Cv = 0.1 gJ/cm3/keV, and, unless otherwise stated, an opacity
inversely proportional to the cube of the material temperature,
r ¼ r0

T 3
: ð41Þ
In the following simulations we use several values of r0 to test our improved DDMC method under various
conditions.

4.1. Infinite medium problems

In the first set of problems, we examine a 1-cm-thick slab with reflective boundary conditions. The matter
and radiation are initially in equilibrium at 1 keV and should remain in equilibrium indefinitely. We use a cell
size of 0.01 cm, a time-step size of 0.1 ns, and 10,000 particles per time step. For each value of r0, we ran the
simulation for an elapsed time of 10 ns using either DDMC or standard Monte Carlo over the entire problem
domain.

Every simulation, both standard Monte Carlo and DDMC, retained the correct equilibrium solution. The
timing results for these calculations are given in Table 1. Here, we have defined speedup as the computer time
required by standard Monte Carlo divided by that required by DDMC. From these results, we see that



Table 1
Infinite medium timing results

r0 (keV3/cm) Monte Carlo time (s) DDMC time (s) Speedup

100 670 197 3.4
500 2.70 · 103 47 57

1000 5.25 · 103 27 190
5000 2.56 · 104 12 2100

10,000 5.11 · 104 10 5100
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DDMC always increases the efficiency of the IMC calculation, from a factor of about 3 to more than 5000. As
expected, DDMC becomes more efficient relative to standard Monte Carlo as the opacity becomes larger. In
fact, the DDMC timings decrease with increasing opacity due to more absorption and less leakage from each
spatial cell.

4.2. Thermal waves

The next set of problems consists of thermal waves driven by a 1 keV intensity incident on the left boundary
of the system. The material and radiation are initially in equilibrium at 1.0 · 10�6 keV. In these simulations,
the cell size is 0.005 cm, the time-step size is 0.01 ns, and we use 100,000 particles per time step. With this spa-
tial discretization, cell sizes range from 5.0 · 1019 mean-free paths for the largest value of r0 considered at the
initial temperature, to 5 mean-free paths for the smallest value of r0 at the source temperature. Again, for each
value of r0 we performed the IMC calculation using standard Monte Carlo or DDMC throughout the entire
problem and ran each simulation for an elapsed time of 10 ns.

We first consider thermal waves in a case where the incident intensity is isotropic. The timing results from
these simulations are presented in Table 2. From this table we see that DDMC improves the efficiency of the
IMC calculation, and the efficiency improvement increases with increasing opacity. For these problems, the
speedup ranged from about 40 to more than 400.

We also plot the material temperature and momentum deposition at 10 ns for r0 = 1000 keV3/cm in Figs. 1
and 2, respectively. These plots are characteristic of the results for other values of r0. From Fig. 1, we see that
the DDMC temperature agrees well with the standard Monte Carlo solution. Also, as seen in Fig. 2, the
momentum-deposition results tend to match, especially near the wave front. However, both the DDMC
and standard Monte Carlo momentum-deposition estimates suffer from severe statistical noise. This large
amount of statistical error is characteristic of momentum-deposition calculations.

Next, we examine thermal waves driven by a normally incident intensity. This anisotropic incident intensity
will induce a boundary layer and test the effectiveness of our improved interface method. The timing results for
these simulations are given in Table 3. Again, DDMC is more efficient than standard Monte Carlo, and the
efficiency gain is greater for larger opacities.

The material temperature and momentum deposition at 10 ns for r0 = 1000 keV3/cm are plotted in Figs. 3
and 4, respectively. As with the isotropic intensity problems, these plots are characteristic of the results for
other values of r0. From these figures we see that the DDMC solution matches the Monte Carlo results quite
well. Again, both estimates of momentum deposition suffer from high statistical error. Although the maximum
material temperature is greater than 1 keV, this calculation does not violate the maximum principle as the inci-
dent intensity is anisotropic [2,25,26]. We also note that in Fig. 3 there is a boundary layer in the Monte Carlo
solution near the left boundary. Although this boundary layer is absent in the DDMC solution, there does not
Table 2
Isotropic incident intensity timing results

r0 (keV3/cm) Monte Carlo time (s) DDMC time (s) Speedup

1000 5.40 · 104 1.09 · 103 49.5
5000 2.05 · 105 8.06 · 102 254

10,000 3.59 · 105 7.82 · 102 459
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Fig. 1. Isotropic incident intensity material temperature, r0 = 1000 keV3/cm.
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Fig. 2. Isotropic incident intensity momentum deposition, r0 = 1000 keV3/cm.

J.D. Densmore et al. / Journal of Computational Physics 222 (2007) 485–503 495
appear to be a statistically significant difference between the DDMC and Monte Carlo leakage rates for this
problem.

In addition, we test the ability of our improved interface method to treat a grazing incident intensity. In this
case, the incident radiation is aligned in the l = 0.1 direction. As with the normally incident intensity thermal
waves considered above, these simulations provide another examination of the accuracy of the approximate
W(l) given by Eq. (26). The timing results for these grazing incident intensity problems are given in Table 4.



Table 3
Normally incident intensity timing results

r0 (keV3/cm) Monte Carlo time (s) DDMC time (s) Speedup

1000 5.12 · 104 1.15 · 103 44.5
5000 1.99 · 105 7.89 · 102 252

10,000 3.56 · 105 7.46 · 102 477
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Fig. 3. Normally incident intensity material temperature, r0 = 1000 keV3/cm.
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Fig. 4. Normally incident intensity momentum deposition, r0 = 1000 keV3/cm.
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Table 4
Grazing incident intensity timing results

r0 (keV3/cm) Monte Carlo time (s) DDMC time (s) Speedup

1000 6.02 · 104 9.65 · 102 62.4
5000 2.11 · 105 8.35 · 102 253

10,000 3.58 · 105 8.30 · 102 431
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Fig. 5. Grazing incident intensity material temperature, r0 = 1000 keV3/cm.
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As with the other thermal-wave simulations, DDMC is more efficient than standard Monte Carlo, and effi-
ciency improvement increases with increasing opacity.

We plot the material temperature and momentum deposition at 10 ns for r0 = 1000 keV3/cm in Figs. 5 and
6, respectively. Again, these figures are characteristic of the results for other values of r0. In these plots, the
DDMC results agree well with the standard Monte Carlo solutions, although not as well as in the isotropic
and normally incident intensity problems. Specifically, the DDMC material temperature is slightly higher than
the Monte Carlo results in Fig. 5, and DDMC overestimates the momentum deposition in Fig. 6—more so
than in Figs. 2 and 4. This decrease in accuracy is most likely caused by the inaccuracy of Eq. (26) for small
values of l. As with the normally incident intensity simulation, the boundary layer near the left boundary in
Fig. 5 does not cause a discrepancy between the DDMC and Monte Carlo leakage rates.

In Fig. 7, we replot the DDMC material temperatures from Figs. 1, 3, and 5. From this plot we note that
the normally incident intensity material temperature is higher, and the wave has progressed farther; and the
grazing incident intensity material temperature is lower, and the wave has not progressed as far, as compared
to the isotropic incident intensity results. If we had employed the Marshak boundary condition as opposed to
the asymptotic diffusion-limit boundary condition to develop our interface method, all DDMC solutions in
Fig. 7 would be identical to the isotropic incident intensity solution and thus incorrect for the other two angu-
lar distributions considered. This inaccuracy is caused by the inability of the Marshak boundary condition to
differentiate between anisotropic angular distributions; the Marshak boundary condition treats the incident
radiation energy as if it were distributed isotropically. Readers are directed to Refs. [12,13] for a more system-
atic comparison of interface methods based on the Marshak and asymptotic diffusion-limit boundary
conditions.
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Fig. 6. Grazing incident intensity momentum deposition, r0 = 1000 keV3/cm.
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Fig. 7. Comparison of DDMC material temperatures for different incident angular distributions.
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4.3. Hybrid problems

We now consider two problems with both optically thick and optically thin regions. We model the optically
thick region using an opacity given by Eq. (41) with r0 = 1000 keV3/cm. The optically thin region has a tem-
perature-independent opacity of 1 cm�1. The material and radiation are initially in equilibrium at
1.0 · 10�6 keV, and the left boundary has an incident intensity at 1 keV. In these simulations, the cell thickness
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is 0.005 cm in the optically thick region and 0.02 cm in the optically thin region, the time-step size is 0.01 ns,
and we use 100,000 particles per time step.

To simulate these problems we employed standard Monte Carlo in the optically thin region and either stan-
dard Monte Carlo or DDMC in the optically thick region. The pure Monte Carlo calculation serves as our
benchmark solution, while the hybrid Monte Carlo-DDMC simulation will test the accuracy and efficiency
of DDMC.

In the first problem, the incident intensity is isotropic, the leftmost region (0 cm < x < 0.1 cm) is optically
thick, and the rightmost region (0.1 cm < x < 0.5 cm) is optically thin. The right boundary is reflective such
that the problem will eventually reach equilibrium at 1 keV. We ran each simulation to an elapsed time of
150 ns.

The material temperature at 10, 20, and 150 ns is plotted in Fig. 8. From this figure we see that the DDMC
results agree well with the standard Monte Carlo solution, and both methods produce the correct equilibrium
solution. In Fig. 9, we plot the momentum deposition at 10 ns. From this plot it appears the DDMC simula-
tion overestimates the peak momentum deposition with respect to standard Monte Carlo by a factor of two.
One possible explanation for this error is that DDMC estimates momentum deposition at cell edges, while
standard Monte Carlo estimates momentum deposition as a cell average. However, this explanation is not
completely sufficient, because DDMC produced momentum-deposition estimates that agreed well with the
corresponding Monte Carlo solutions in the thermal waves discussed above. Certainly, the accuracy of our
technique for estimating momentum deposition should be studied over a wider range of problems. For this
problem, the standard Monte Carlo simulation required 120 h of computer time, while DDMC used
5.6 h—a speedup of greater than 20.

In the second problem, the prescribed intensity is normally incident, the leftmost region (0 cm < x < 1 cm)
is optically thin, and the rightmost region (1 cm < x < 1.5 cm) is optically thick. We ran each simulation to an
elapsed time of 50 ns. Since the optically thin region is a mean-free path thick, the intensity reaching the opti-
cally thick region is fairly anisotropic. Thus, using our improved interface method is important for this
problem.

The resulting material temperature at 0.5, 1.5, and 50 ns is plotted in Fig. 10. Again, the DDMC results
agree well with the standard Monte Carlo solution. As in the normally incident thermal wave case discussed
above, this calculation does not violate the maximum principle, even though the material temperature is
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Fig. 8. First hybrid problem material temperature.
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Fig. 9. First hybrid problem momentum deposition.
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greater than 1 keV, due to the anisotropic incident intensity. In addition, we plot the momentum deposition at
0.5 ns in Fig. 11. Most momentum deposition occurred in only a few cells near the interface between the opti-
cally thin and optically thick regions. However, the DDMC estimate was within 1.6% of the standard Monte
Carlo solution at the peak value. In this problem, standard Monte Carlo took 28.6 h of computer time, while
DDMC required 2.2 h—for a speedup of about 13.
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Fig. 10. Second hybrid problem material temperature.
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Fig. 11. Second hybrid problem momentum deposition.
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4.4. Comparison of DDMC and RW

We now compare our DDMC method to RW. In RW, the sphere radius R is required to be greater than
five effective-scattering mean-free paths [6], i.e.,
R >
5

ð1� fnÞrn
: ð42Þ
Otherwise, the particle is transported via standard Monte Carlo. This requirement would cause RW to be in-
voked infrequently, if at all, in the radiative-transfer problems presented previously. Thus, we compare
DDMC to RW using a new radiative-transfer problem. This problem has an optically thick region adjacent
to an optically thin region and reflective boundary conditions. The optically thick region (0 cm < x < 1 cm)
has an opacity given by Eq. (41) with r0 = 50,000 keV3/cm. The optically thin region (1 cm < x < 2 cm) has
a temperature-independent opacity of 1 cm�1. The material and radiation are initially in equilibrium at
1 keV and should remain in equilibrium indefinitely. We use 10,000 particles per time step, a time-step size
of 0.1 ns, a cell size of 0.1 cm in the optically thin region, and various cell sizes in the optically thick region.
We performed each calculation using standard Monte Carlo in the optically thin region, and standard Monte
Carlo, RW, or DDMC in the optically thick region. In addition, we ran each simulation for an elapsed time of
10 ns.

Every method (pure Monte Carlo, hybrid Monte Carlo/RW, and hybrid Monte Carlo/DDMC) preserved
the correct equilibrium solution regardless of cell size. The timing results for these calculations are presented in
Table 5. Here, we have defined speedup as the computer time required by standard Monte Carlo divided by
the computer time required for the given hybrid method. From this table, we see that both RW and DDMC
are more efficient than standard Monte Carlo, and DDMC is more efficient than RW for all cell sizes. RW
performs the best for optically thick spatial cells, since the sphere radii are large and Eq. (42) is more easily
satisfied. However, for the largest cell size considered, Dx = 0.1 cm, the DDMC calculation was still about 18
times faster than the RW simulation. As the spatial grid is refined in the optically thick region, the efficiency
gain of each hybrid method decreases. However, the decrease in speedup is much greater for RW than
DDMC. For small cell sizes, DDMC particles still take discrete steps across spatial cells (albeit small steps),
and RW is invoked infrequently. Thus, we expect DDMC to perform better than RW as cell size decreases.



Table 5
Comparison of DDMC and RW

Dx (cm) Monte Carlo time (s) RW time (s) RW speedup DDMC time (s) DDMC speedup

0.1 1.49 · 105 299 498 16 9300
0.05 1.48 · 105 589 251 16 9300
0.01 1.49 · 105 2.88 · 103 51.7 18 8300
0.005 1.50 · 105 5.79 · 103 25.9 19 7900
0.001 1.60 · 105 3.14 · 104 5.1 53 3000
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For the smallest cell size considered, Dx = 0.001 cm, the DDMC calculation was almost 600 times faster than
the RW simulation.

5. Conclusions

We have extended previously developed DDMC methods in three ways that improve the accuracy and util-
ity of DDMC for grey IMC simulations. First, our DDMC method employs a temporally continuous diffusion
equation. This lack of temporal discretization results in a theoretically more accurate DDMC calculation and
no ambiguity regarding what time to assign to DDMC particles that are converted into Monte Carlo particles.
Also, we use a technique for interfacing standard Monte Carlo and DDMC based on the asymptotic diffusion-
limit boundary condition. This technique can produce accurate results regardless of the angular distribution of
incident Monte Carlo particles. Finally, we develop a method for estimating momentum deposition in DDMC
simulations. This momentum-deposition estimate is required to correctly calculate fluid motion in coupled
radiation-hydrodynamics problems.

With a set of numerical calculations, we demonstrated the accuracy and improved efficiency, with respect to
both standard Monte Carlo and RW, of our new DDMC method. Specifically, we observed speedups of
3–9000 over standard Monte Carlo and speedups of 18–600 over RW.

We note that although our temporally continuous treatment is theoretically more accurate than the use of a
discretized diffusion equation in other DDMC techniques, we have not demonstrated this advantage numer-
ically. The backward-Euler differencing employed in temporally discretized DDMC methods is first-order
accurate in time, and thus is probably sufficient in most applications, while our temporally continuous DDMC
technique is slightly more expensive due to the sampling of a time to collision (and evaluation of a logarithm)
for every DDMC step. Nevertheless, our methodology is certainly superior at the interface between optically
thick and optically thin regions since there is no need to assign a time to a DDMC particle that is converted
into a Monte Carlo particle. As stated previously, temporally discretized DDMC techniques sample a time
uniformly within a time step, and thus it is possible for the simulation to violate causality. Although it is
uncertain what overall impact this non-physical behavior would have on a practical calculation, this effect
is certainly undesirable. To investigate the possible advantages of our temporally continuous methodology
in more detail, we plan on examining the treatment of transport-diffusion interfaces with respect to time in
a way similar to the previous investigation done with respect to angle [13].

We have also neglected to develop a method for automatically determining what regions of the problem to
simulate with DDMC, a requirement for employing DDMC in practical calculations. In the numerical results
presented in this paper, the region in which we used DDMC was always selected a priori. Although there has
been some effort to heuristically calculate the minimum allowable sphere size in RW [5,6], we are unaware of
similar work for DDMC. When developing such a method, one must weigh accuracy versus efficiency gain
when substituting DDMC for standard Monte Carlo. Thus, it is not only desirable to employ DDMC in a
spatial cell if the cell itself is optically thick but also in an optically thick region consisting of several spatial
cells even if the individual cells are of moderate optical depth. However, one should certainly not employ
DDMC in optically thin spatial cells, even if the corresponding region is optically thick, since it is possible
for DDMC to be less efficient than standard Monte Carlo in this case.

In addition to the areas of future work discussed above, there are several other issues that must be resolved
in order for DDMC to be used in practical calculations. First, the estimates of momentum deposition
exhibited a large amount of statistical error in both the DDMC and standard Monte Carlo simulations.
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A technique for reducing this statistical error must be developed in order to accurately perform coupled radi-
ation-hydrodynamics calculations. Also, the planar-geometry, grey DDMC method presented in this paper
must be extend to multidimensional, frequency-dependent problems. This work would include developing a
hybrid technique for treating optically thin and optically thick frequency groups and employing a diffusion
equation discretized on the unstructured and/or non-orthogonal spatial grids commonly used in hydrodynam-
ics calculations.
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